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Abstract. Discovering imaging biomarkers for autism spectrum disor-
der (ASD) is critical to help explain ASD and predict or monitor treat-
ment outcomes. Toward this end, deep learning classifiers have recently
been used for identifying ASD from functional magnetic resonance imag-
ing (fMRI) with higher accuracy than traditional learning strategies.
However, a key challenge with deep learning models is understanding
just what image features the network is using, which can in turn be
used to define the biomarkers. Current methods extract biomarkers, i.e.,
important features, by looking at how the prediction changes if “ignoring”
one feature at a time. However, this can lead to serious errors if the fea-
tures are conditionally dependent. In this work, we go beyond looking at
only individual features by using Shapley value explanation (SVE) from
cooperative game theory. Cooperative game theory is advantageous here
because it directly considers the interaction between features and can be
applied to any machine learning method, making it a novel, more accu-
rate way of determining instance-wise biomarker importance from deep
learning models. A barrier to using SVE is its computational complexity:
2N given N features. We explicitly reduce the complexity of SVE compu-
tation by two approaches based on the underlying graph structure of the
input data: (1) only consider the centralized coalition of each feature; (2)
a hierarchical pipeline which first clusters features into small communi-
ties, then applies SVE in each community. Monte Carlo approximation
can be used for large permutation sets. We first validate our methods on
the MNIST dataset and compare to human perception. Next, to insure
plausibility of our biomarker results, we train a Random Forest (RF) to
classify ASD/control subjects from fMRI and compare SVE results to
standard RF-based feature importance. Finally, we show initial results
on ranked fMRI biomarkers using SVE on a deep learning classifier for
the ASD/control dataset.
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1 Introduction

Autism spectrum disorder (ASD) affects the structure and function of the brain.
To better target the underlying roots of ASD for diagnosis and treatment, efforts
to identify reliable biomarkers are growing [1]. Deep learning models have been
used in fMRI analysis [2], which is used to characterize the brain changes that
occur in ASD [3]. However, how the different brain regions coordinate on the deep
convolutional neural network (DNN) has not been previously explored. When
features are not independent, Shapley value explanation (SVE) is a useful tool to
study each feature’s contribution [4–6]. The methods are based on fundamental
concepts from cooperative game theory [7], which assigns a unique distribution
(among the players) of a total surplus generated by the coalition of all players in
the cooperative game. However, if the interactive features’ dimensions are high,
SVE becomes computationally consuming (exponential time complexity).

The innovations of this study include: (1) We applied SVE on interactive
features’ prediction power analysis; (2) Our proposed method does not require
retraining the classifier; (3) To handle the high dimensional inputs of the DNN
classifier, we propose two methods to reduce the dimension of SVE testing fea-
tures, once the underlying graph structure of features is defined; and (4) Different
from kernel SHAP proposed in [4], as a model interpreter, our proposed methods
do not require model approximation. In Sect. 2, we introduce the background on
cooperative game theory. In Sect. 3, we propose the two approaches to approx-
imate Shapley value. We also show the approximation is true under certain
assumptions. Three experiments are given in Sect. 4 to show the feasibility and
advantage of our proposed methods.

2 Background on Cooperative Game Theory

2.1 Shapley Value

Our approach to analyzing the contributions of individual nodes to the overall
network is the assignment of Shapley values. The Shapley value is a means of
fairly portioning the collective profit attained by a coalition of players, based on
the relative contributions of the players in some game. Let N = {1, 2, . . . , N}
be the set of all the players, S ⊂ N be a subset of players forming a coalition
within this game, and v : 2N → R be the function that assigns a real numbered
profit to the subset S of players. By definition, for any v, v(∅) = 0, here ∅ is
the empty set. A Shapley value is assigned by a Shapley function Φ : N → R,
which associates each player in N with a real number and which is uniquely
defined by the following axioms [7]: 1. Efficiency ; 2. Symmetry ; 3. Dummy ; and 4.
Additivity. In our context, we are interested in the brain regions that discriminate
ASD and control subjects. Classification prediction score is the total value to be
distributed, and each brain region is a player, which will be assigned a unique
reward (i.e. importance score) by its contribution to the classifier.
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Fig. 1. (a) Toy visualization of graph structure of the input data. When estimating the
contribution of feature r (yellow), (b) C-SVE considers r’s directly connected neighbors
(red) and (c) H-SVE considers the community (red) to which r belongs. (Color figure
online)

2.2 Challenges of Using Shapley Value

While Shapley values give a more accurate interpretation of the importance of
each player in a coalition, their calculation is expensive. When the number of
features (i.e., players in the game) is a massive N , the computational complex-
ity is 2N , which is especially expensive if the model is slow to run. We propose
addressing this computational challenge by utilizing the graph structure of the
data. Consider the case when the underlying graph structure of the data is
sparsely connected, e.g., the sparse brain functional network. Under this obser-
vation, we propose two approaches (Fig. 1) to simplify Shapley value calculation.
Method I only considers the centralized coalition of each player to reduce the
number of permutation cases by assigning weight 0 to features that rarely collab-
orate. Method II first applies community detection on the feature connectivity
network to cluster similar features (forming different games and teams), then
within the selected communities, assigns a feature’s contribution by SVE.

3 Methods

In classification tasks, only certain features in a given input provide evidence for
the classification decision. For a given prediction, the classifier assigns a relevance
value to each input feature with respect to a class label Y ∈ C. The probability
of class Y for input X = (X1,X2, . . . , XN ) is given by the predictive score of
the DNN model f : D → R

|C| where D is the domain for input X and each
component of the output of f represents the conditional probability of assigning
a class label, i.e. p(Y |X).

The basic idea used in prediction difference analysis [8] is that the relevance
of a feature xi can be estimated by measuring how the prediction changes if the
feature is unknown. Here we extend this setting by considering the interaction of
a set of different features instead of examining the features one by one. Denote
the image corrupted at a feature set S ⊆ N as XN\S . To calculate p(Y |XN\S),
following [8], we marginalize out the corrupted feature set S:

p(Y |XN\S) = EXS∼p(XS |XN\S)p(Y |XN\S ,XS). (1)
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Denote vX the importance score evaluation function for input X. The prediction
power for the rth feature is the weighted sum of all possible marginal contribu-
tions:

Φr(vX ) =
1

|N |
∑

S⊆N\{r}

( |N | − 1
|S|

)−1

(vX (S ∪ {r}) − vX (S)). (2)

Similar to [5], we introduce the importance score of a feature set S

vX (S) := EY [− log
1

p(Y |X)
|X] − EY [− log

1
p(Y |XN\S)

|X], (3)

which can be interpreted as the negative of the expected number of bits required
to encode the output of the model based on the input XN\S .

Theorem 1. 〈N = {1, 2, . . . , N}, vX 〉 is a cooperative form game and Φ(vX ) =
(Φ1, Φ2, . . . , ΦN ) corresponds to the game’s Shapley value.

The proof can be directly borrowed from [6] showing it has a unique solution
and satisfies Axioms 1–4.

An illustrative example is Boolean logic expression, OR((x1, x2)) = 1 when
x1 or x2 is one and zero otherwise for N = {1, 2}, D = {0, 1} × {0, 1}. Suppose
p(Y = 1|X) = OR(X) and the base of the logarithm is 2. We aim to find the
contributions of predicting 1 given input X = (1, 1). If both values of X are
unknown, one can predict that the probability of the result being 1 is 3

4 . We
have vX (∅) = 0 − (− log 1

1 ) = 0, vX ({1}) = vX ({2}) = 0 − (− log(11 )) = 0
and total value vX ({1, 2}) = 0 − (− log 4

3 ) = log 4
3 . Therefore the contributions

of each feature are: Φ1 = 1
2 [(vX ({1}) − vX (∅)) + (vX ({1, 2}) − vX ({2}))] =

1
2 [(0− 0)+ (log 4

3 − 0)] = 1
2 log 4

3 and Φ2 = 1
2 [(vX ({2})− vX (∅))+ (vX ({1, 2})−

vX ({1}))] = 1
2 [(0−0)+(log 4

3 −0)] = 1
2 log 4

3 . The generated contributions reveal
that both features contribute the same amount towards the prediction being 1
given input (1, 1). In addition, we can interpret there is coalition between the
two players, since vX ({1, 2}) > vX ({1}) + vX ({2}). However, we will get the
myopic conclusion that both features are unimportant by only ignoring a single
feature, because given one feature Xi = 1, p = 1 is for sure.

With the underlying structure of data, we have prior knowledge that some
features of the data set are barely connected; in other words, there is very likely
no coalition between these features. We define a connected graph G = (V, E)
with nodes V and edges E . Given an adjacency matrix A = (aij) of the undi-
rected graph G (for example, the Pearson correlation of mean time series of brain
regions), we use a threshold th to binarize aij , i.e. ab

ij = 1 when aij > th and
zero otherwise, resulting in a sparsely connected graph.

3.1 Method I: Centralized Shapley Value Explanation (C-SVE)

For a given feature i, its 1-step connected neighborhood is defined by the set
Ni := {j ∈ V|ab

ij = 1}. As an approximation, we propose Centralized Shapley



722 X. Li et al.

Value Explanation (C-SVE), which only calculates the marginal contribution
when a feature collaborates with its neighbors.

Definition 1. Given classifier f and sample X, the C-SVE assigns the predic-
tion power on feature r by

Φ̂C
r (vX ) =

1
|Nr|

∑

S⊆Nr\{r}

( |Nr| − 1
|S|

)−1

(vX (S ∪ {r}) − vX (S)). (4)

The coefficients in front of the marginal contributions is a weighted transforma-
tion of the original SVE form (in Eq. (2)), where instead of assigning each per-
mutation the same weight, sets not belonging to the neighborhood were assigned
0 weight. In practice, we can reject the non-coalition permutations and average
the Shapley values for the remaining terms.

Theorem 2. We have Φ̂C
X (r) = ΦX (r) almost surely if we have Xr ⊥ XN\Nr

|
XU and Xr ⊥ XN\Nr

|XU , Y for any U ⊂ Nr \ {r}.
The proof is shown in AppendixA. It is important to show that our proposed

approximation is a good one. We can easily check the necessary condition that
for k /∈ Nr, the angle between the average time series X̄r in ROI r and X̄k in
ROI k satisfies cos(X̄r, X̄k) < ε, which corresponds to the small edge weight
(∼ 0) in the graph that we created using Pearson correlation.

3.2 Method II: Hierarchical Shapley Value Explanation (H-SVE)

In method II, we approximate the Shapley value by a hierarchical approach:
(1) detect communities in the graph, then (2) apply SVE in each community
individually.

Modularity-Based Community Detection. We use the same undirected
graph architecture defined in Method I, but use greedy modularity method [9]
to divide all the features into non-overlapping communities. Then the whole
features sets can be expressed by a combination of non-overlapping communities
N = A1

⋃
A2

⋃ · · · ⋃ AM and the features in one community only cooperate
within the group, hence are independent to those in the different communities.
Therefore we can define different Shapley value rules in the different communities,
but the Shapley values are comparable within and across communities.

Shapley Value of Each Feature in the Community. With the assumption
that different communities of players do not play in a game (rarely connect), we
assume the communities of features are independent. In order to compare the
feature importance in the whole brain, firstly we define the Shapley value for
feature subset S in community Ai as

vX (S) := EY [− log
1

p(Y |XAi
)
|XAi

] − EY [− log
1

p(Y |XAi\S)
|XAi

]. (5)
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Algorithm 1. Approximating the prediction power of rth feature’s value Φr

Input: X , a given instance; m, number of samples; v, importance score function

1: Φr ← 0
2: for j = 1 to m do
3: choose a random permutation of features O ∈ π(Nr)
4: choose a random instance X̂ from the training dataset
5: v1 ← v(τ(X , X̂ , P rer(O)

⋃{r}))
6: v2 ← v(τ(X , X̂ , P rer(O)))
7: Φr ← Φr + (v1 − v2)
8: end for
9: Φr ← Φr

m

(where N isthe neighborhood of r in C-SVE or community of r in H-SVE)

Definition 2. Suppose the features are clustered into N = A1

⋃
A2

⋃ · · · ⋃ AM .
The H-SVE assigns the prediction power of feature r in Ai by

Φ̂H
r (vX ) =

1
|Ai|

∑

S⊆Ai\{r}

( |Ai| − 1
|S|

)−1

(vX (S ∪ {r}) − vX (S)). (6)

Theorem 3. When XA1 ⊥ XA2 ⊥ · · · ⊥ XAM
, we have Φ̂H

r (vX ) = Φr(vX )
almost surely.

The proof is similar to the proof for Theorem 2.

3.3 Monte Carlo Approximation for Large Neighborhood

Although we simplify SVE by C-SVE or H-SVE methods, computation may
still be challenging. For example: (1) in C-SVE, feature node r to be analyzed
is densely connected with the other nodes and (2) in H-SVE, there exists large
communities. Based on the alternative formulation of the Shapley value (Eq. (7)),
let π(N ) be the set of all ordered permutations of N . Let Prer(O) be the set of
players which are predecessors of player r in the order O ∈ π(N ), we have

Φr(vX ) =
1

|N |!
∑

O∈π(N )

(vX (Prer(O) ∪ {r}) − vX (Prer(O))). (7)

We use the following Monte Carlo (MC) algorithm to approximate Eqs. (4) and
(6). We define:

τ(x, x̂, S) = (z1, z2, . . . , zs), zi =
{

xi; i ∈ S
x̂i; i /∈ S

. (8)

Then the unbiased MC approximation can be expressed as in Algorithm1. Given
m, if 2|N (r)| � m, we will apply MC approximation.
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Fig. 2. The predictive power for identifying (a) the digit 8 by (b) C-SVE, (c) H-SVE,
and (d) single ROI explanation. The prediction difference after corrupting the ROIs
which contribute 90% in total are denoted on the left corner.

4 Experiments and Results

4.1 Validation on MNIST Dataset

In order to show the feasibility of the proposed two approaches, we test the expla-
nation results on MNIST dataset [10], where we can compare to human judgment
about the feature importance. We trained a convolutional network (Conv2D(32)
→ Conv2D(64) → Dense(128) → Dense(10)) achieving 97.32% accuracy. We
parcellate the image into ROIs using slic [11] to mimic the setting of detecting
saliency brain ROI for identifying ASD. Denoting the distance between the cen-
ter of ROI i and ROI j as dij , we define the connection between ROI i and j as

aij = exp(−dij/2). Here we use th =
∑

i

∑
j aij

|E| . The results are shown in Fig. 2,
where we uniformly divided each ROI’s importance score by the number of pixels
in the ROI to mitigate dominance by large ROIs and divided by max

i∈N
(Φi) for

visualization. The interpretation results matched our human perception that the
“x cross” shape in the center is important for recognizing digit 8. Compared with
single ROI testing, our proposed methods assigned smoother and more widely
distributed importance scores to more pixels. To examine the effect of important
ROIs on prediction, we corrupted pixels whose importance power added up to
90% of the positive importance scores. We then compared the difference between
the original prediction probability of digit 8 and the new prediction probability
using the corrupted image. C-SVE and H-SVE could better fool the classifier,
which decreased the prediction probability by 0.8939 and 0.9089 respectively,
compared to only a 0.2043 decrease for the single ROI method. Some ROIs may
not contribute to classification on their own but influence the results when com-
bined with other regions. In the single ROI method, these ROIs will be assigned
0 importance score. However, by our proposed SVE method these ROIs can be
discovered.

4.2 ASD Task-fMRI Dataset and Underlying Graph Structure

We tested our methods on a group of 82 children with ASD and 48 age and
IQ-matched healthy controls used for training the classifiers to distinguish the
two groups. Each subject underwent a biological motion perception task [3]
fMRI scan (BOLD, TR = 2000 ms, TE = 25 ms, flip angle = 60◦, voxel size
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3.44 × 3.44 × 4mm3) acquired on a Siemens MAGNETOM Trio TIM 3T scan-
ner. We randomly split 80% of the data for training, 10% for validation of model
parameters, and 10% for testing.

The Automated Anatomical Labeling (AAL) atlas [12] was used to parcellate
the brain into 116 regions. For each subject, we computed the 116×116 adjacency
matrix using Pearson correlation. We averaged the adjacency matrix over the
patient subjects in the training data and binarized the edges based on whether
its weight is larger than average weight (assigning 1) or not (assigning 0). For
H-SVE method, we obtained the non-overlapping community clustering for each
subject by greedy modularity method [13], which resulted in 10 communities.

4.3 Comparison with Random Forest-Based Feature Importance

As an additional “reality check” for our method, we apply a Random Forest (RF)
strategy (1000 trees) to the same dataset (71.4% accuracy on testing set) and
compare the results, using the RF-based feature importance (mean Gini impurity
decrease) as a form of standard method for comparison. Instead of inputting the
entire fMRI image, we input the node-weighted modularity, which is defined by
Mi =

∑
j �=i aij where aij is the partial correlation coefficient between ROI i and

j. Therefore the inputs are 116×1 vectors. Based on axiom 4, we can treat each
subject as a game and each ROI as a player, and then do group-based analysis
by adding Φ(r) over the subjects to investigate ROI r’s importance. For a fair
comparison, like in RF, we used all of the training dataset. The interpretation
results are shown in Fig. 3. Seven of the top 10 important ROIs discovered by
C-SVE and H-SVE overlapped with RF interpretation.

Fig. 3. The relative importance scores of the top 10 important ROIs assigned by Ran-
dom Forest and their corresponding importance scores in C-SVE and H-SVE. The
importance rank of each ROI is denoted on the bar.

Table 1. Prediction decrease after corrupting important ROIs for the DNN

C-SVE H-SVE Single region

Δprob 0.720 (0.221) 0.693 (0.144) 0.335 (0.060)

Δacc 0.714 0.714 0.428

(Δprob = decrease in test prediction probability, Δacc
= decrease in test accuracy)
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4.4 Explaining the ASD Brain Biomarkers Used in Deep
Convolutional Neural Network Classifier

Here we chose the deep neural network 2CC3D (Fig. 4) described in [14]
using each voxel’s mean and standard deviation as two channel input. We
start with preprocessed 3D fMRI volumes downsampled to 32 × 32 × 32. We
defined the original fMRI sequence as X(x, y, z, t), the mean-channel sequence
as X̃(x, y, z, t) and the standard deviation-channel as X̂(x, y, z, t). For any x, y, z

in {0, 1, · · · , 31}, X̃(x, y, z, t) = 1
w

∑t
τ=t+1−w X(x, y, z, τ), X̂(x, y, z, t)2 =

1
w−1

∑t
τ=t+1−w[X(x, y, z, τ) − X̃(x, y, z, t)]2, where w is the temporal sliding

window size and w = 3 in our experiment, hereby we augment data to 18720
samples. Training, validation and testing data was split based on subjects. It
achieved 85.7% classification accuracy by majority voting. Running on a work-
station with a Nvidia 1080 Ti GPU, testing all 7 ASD subjects in the testing
dataset took 21k s and 26k s for C-SVE and H-SVE, respectively, using 1000
samples for MC approximation, which converged to the stable ranks. As in the
MNIST experiment, we divided Φ(r) by the number of voxels in ROI r, avoiding
domination by large ROIs.

The contribution/prediction power of the regions (relative to the most impor-
tant one) averaged over testing subjects are illustrated in Fig. 5 and listed in
Fig. 6. There are 19 overlapping ROIs out of the top 20 important ROIs found

Fig. 4. 2CC3D network architecture

Fig. 5. Top 20 predictive biomarkers detected by (a) C-SVE and (b) H-SVE for the
deep learning classifier. More yellow ROIs signify higher importance. (Color figure
online)
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Fig. 6. The relative importance scores of the top 20 ROIs assigned by C-SVE and their
corresponding importance scores in H-SVE for the deep learning model.

Fig. 7. (a) The top positive correlations and (b) the top negative correlations between
deep learning model biomarkers and functional keywords.

by C-SVE and H-SVE, although the orders were different. The Spearman rank-
order correlation coefficient [15] of the importance score ranks of all the ROIs
explained by both methods was 0.58. These detected regions were consistent
with the previous findings in the literature [2,3]. Also, we used Neurosynth [16]
to decode the functional keywords associated with the overlapping biomarkers
found by C-SVE and H-SVE (Fig. 7). These top regions are positively related to
self-referential/perspective-taking concepts (higher level social communication)
and negatively related to more basic social and language concepts (lower level
skills). Using the manner described in Eq. (1), we corrupted the important ROIs
(50% of the positive importance scores summing up in order) determined by
C-SVE, H-SVE, and single region testing separately and calculated the average
decrease in probability Δprob (showing mean and standard deviation) and accu-
racy Δacc for the subjects in the testing set. The results are listed in Table 1.

Notice that the top 10 biomarkers we discovered using SVE in the RF model
were different from the ones found in the 2CC3D model. Possible reasons are: (1)
the inputs are different. 2CC3D used activation whereas RF used connectivity
and 2CC3D used ASD subjects in testing set whereas RF used all the training set;
(2) the prediction accuracy of RF model is much lower than 2CC3D; and (3) our
proposed methods performed as a model interpreter rather than data interpreter,
which may have different sensitivity response to the different models.
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5 Conclusion and Future Work

Considering the interaction of features, we proposed two approaches (C-SVE and
H-SVE) to analyze feature importance based on SVE, using the underlying graph
structure of the data to simplify the calculation of Shapley value. C-SVE only
considers the centralized interaction, while H-SVE uses a hierarchical approach
to first cluster the feature communities, then calculate the Shapley value in each
community. When a feature’s neighborhood/community still contains a large
number of features, we apply MC integration method for further approximation.
Experiments on the MNIST dataset showed our proposed methods can capture
more interpretable features. Comparing the results with Random Forest feature
interpretation on the ASD task-fMRI dataset, we further validated the accuracy
and feasibility of the proposed methods. When applying both methods on a deep
learning model, we discovered similar possible brain biomarkers, which matched
the findings in the literature and had meaningful neurological interpretation.
The pipeline can be generalized to other feature importance analysis problems,
where the underlying graph structure of features is available.

Our future work includes testing the methods on different atlases, graph
building methods, and community clustering methods, etc. In addition, the inter-
action score is embedded in the proposed algorithms. It can be disentangled to
understand the interaction between the features.

A Appendix: Proof of Theorem2

For any subset A ⊂ N , we use the short notation Ur(A) := A∩Nr and Vr(A) :=
A ∩ (N \ Nr), noting that A = Ur(A) ∪ Vr(A). Rewriting Eq. (2) as

Φr(vX ) =
1

|N |
∑

U⊆Nr\{r}

∑

A⊆N ,Ur(A)=U

( |N | − 1
|A|

)−1

(vX (A ∪ {r}) − vX (A)),

and using
∑

A⊆N ,Ur(A)=U

( |N | − 1
|A|

)−1

=
|N |
|Nr|

( |Nr| − 1
|U | − 1

)−1

,

the expected error between Φ̂C
r (vX ) and Φr(vX ) is

E[|Φ̂C
r (vX ) − Φr(vX )|] ≤ 1

|N |
∑

U⊆Nr\{r}

∑

A⊆N ,Ur(A)=U

( |N | − 1
|A|

)−1

E[|ΔX
r (U, A)|]

where

ΔX
r (U,A) = (vX (U ∪ {r}) − vX (U)) − (vX (A ∪ {r}) − vX (A))

= log
p(Y |XN\U )

p(Y |XN\(U∪{r}))
− log

p(Y |XN\(U∪V ))
p(Y |XN\(U∪V ∪{r})

,
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with V short for Vr(A). Let W = N \ (Nr ∪ V ), Z = Nr \ ({r} ∪ U). Then

ΔX
r (U,A) = log

p(Y |XW∪V ∪Z∪{r})p(Y |XW∪Z)
p(Y |XW∪V ∪Z)p(Y |XW∪Z∪{r})

. (9)

Since Xr ⊥ XV |XZ , we have p(XV |XW∪Z∪{r}) = p(XV |XW∪Z), and

(�) =
p(XW∪V ∪Z∪{r})p(XW∪Z)

p(XW∪V ∪Z)p(XW∪Z∪{r})
=

p(XW∪Z∪{r})p(XV |XW∪Z∪{r})p(XW∪Z)

p(XW∪Z)p(XV |XW∪Z)p(XW∪Z∪{r})
= 1.

We can multiply the quotient in Eq. (9) by (�),

ΔX
r (U,A) = log

p(Y |XW∪V ∪Z∪{r})p(Y |XW∪Z)
p(Y |XW∪V ∪Z)p(Y |XW∪Z∪{r})

p(XW∪V ∪Z∪{r})p(XW∪Z)
p(XW∪V ∪Z)p(XW∪Z∪{r})

= log
p(XW∪V ∪{r}|Y,XZ)p(Y,XZ)p(Y,XZ)p(XW |Y,XZ)
p(Y,XZ)p(XW∪V |Y,XZ)p(Y,XZ)p(XW∪{r}|Y,XZ)

.

We have p(XW∪V ∪{r}|Y,XZ) = p(XW∪V |Y,XZ)p(Xr|Y,XZ), since XW∪V ⊥
Xr|Y,XZ . So

ΔX
r (U,A) = log

p(XW∪V |Y,XZ)p(Xr|Y,XZ)p(XW |Y,XZ)
p(XW∪V |Y,XZ)p(XW∪{r}|Y,XZ)

.

Since XW ⊥ Xr|Y,XZ , we have p(XW∪{r}|Y,XZ) = p(XW |Y,XZ)p(Xr|Y,XZ).
Hence ΔX

r (U,A) = log 1 = 0. Therefore we have E[|Φ̂C
r (vX ) − Φr(vX )|] = 0.
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